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Abstract
We review our recently developed methods of solving large-scale simultaneous linear equations
and applications to electronic structure calculations both in one-electron theory and
many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient)
method based on the Krylov subspace, and the most important issue for applications is the shift
equation and the seed switching method, which greatly reduce the computational cost. The
applications to nano-scale Si crystals and the double orbital extended Hubbard model are
presented.

1. Introduction: Physics and linear equations

Solving the electronic properties in materials should start
by obtaining eigenvalues and eigenvectors of the electronic
structures in those materials:

H |α〉 = E |α〉 (1)

(z − H )|x ( j)〉 = | j〉 (2)

Gi j(z) = 〈i |(z − H )−1| j〉 = 〈i |x ( j)〉, (3)

where H is the Hamiltonian of one-electron problem in a
potential field determined self-consistently within the local
density approximation of the density functional theory, and |i〉
and | j〉 are given states. Gi j(z) is the Green’s function. A
parameter z is a complex number z = E + iδ, E is an energy
and δ is an infinitesimal small (positive) number.

The electron–electron interaction is very crucial for many
physical properties in strongly correlated materials and single-
electron spectra in many-electron problems can be obtained
by the Green’s function of the many-electron problem. The
Green’s function in the many-electron problem can be defined,
once we know the ground state |G〉, as

Gi j(z) = 〈G|âi(z − H )−1â†
j |G〉, (4)

where H is the many-electron Hamiltonian, âi and â†
i are

annihilation and creation operators of an electron at the i state
(or orbital). Then if we define

| j〉 = â†
j |G〉 (5)

〈i | = 〈G|âi , (6)

the Green’s function can be written in the exactly same form as
equations (2) and (3):

(z − H )|x ( j)〉 = | j〉 (7)

Gi j(z) = 〈i |x ( j)〉. (8)

Equations (2) and (7) can be written in a unified form as

Ax = b, A = z − H. (9)

We should note that the ground state |G〉 of the many-electron
problem can also be obtained with the help of equation (9) and
the CG method.

Our problem here is how to solve equation (9) if the
matrix size of A is huge. The structure of the present paper
is as follows. In section 2, the idea of the Krylov subspace
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is introduced. We explain the COCG method with shift
equations and the seed switching in section 3. Applications
to one-electron problems and the extended Hubbard model
are presented in section 4, and the conclusions are given in
section 5.

2. Krylov subspace method

2.1. Numerical recipe of simultaneous linear equations

Many problems can be reduced to obtaining numerical
solutions of a set of large-scale simultaneous linear equations:

Ax = b, A = z − H. (10)

There are two categories of solving methods for equation (10).
The first is a direct method such as the Gaussian

elimination method or the Cholesky decomposition method.
The second is an iterative method, which is appropriate to a
large sparse matrix H . Examples are the conjugate gradient
(CG) method or Lanczos method.

A very primitive iterative method is the Gram–
Schmidt orthogonalization method for a set of vectors
{x0, x1, x2, . . . , xn−1}. Applying the Gram–Schmidt orthog-
onalization method to a set of vectors {x0, H x0, H 2x0, . . . ,

H n−1x0}, one can construct the Krylov subspace Kn(H, x0)

generated from H and x0 as

Kn(H, x0) = span{x0, H x0, H 2x0, . . . , H n−1x0}. (11)

Lanczos found a new powerful way to generate an
orthogonal basis for such subspace when the matrix is
symmetric [1], and this method is related to the Krylov
subspace. Hestenes and Stiefel proposed the conjugate
gradient (CG) method for systems that are both symmetric and
positive definite [2].

2.2. Krylov subspace

When H is a huge N × N matrix, the inverse of H is not easily
obtained, or impossible to obtain, and the iterative method
becomes a useful concept.

The condition of construction of the Krylov subspace is

xn = x0 + zn, zn ∈ Kn(H, r0). (12)

A residual vector of the nth approximate solution can be
written as

rn = b − Axn = r0 − Azn, rn ∈ Kn+1(H, r0). (13)

In order to determine the approximate solution xn uniquely, one
needs to decide the searching direction of xn by an subsidiary
condition to the residual vector rn . We then adopt the condition
of the orthogonal residual condition, which ensures that the
iterative procedure can reach an exact solution, at most, after
(N − 1) iteration steps.

The basic theorem of the Krylov subspace is the invariance
of the subspace under a scalar shift σ1;

Kn(H, r0) = Kn(σ1 + H, r0). (14)

3. COCG method

3.1. Hermitian matrix and CG method

When the matrix H is Hermitian, the procedure is the well-
known ‘conjugate gradient’ (CG) method [2]. Here an
inner product of vectors u = (u1, u2, . . . , uN )T and v =
(v1, v2, . . . , vN )T is defined as

(u, v) = u∗Tv =
N∑

i=1

u∗
i vi (15)

and the orthogonal residual condition in the CG method is

rn ⊥ Kn(H, r0). (16)

We define xn, pn and rn as the approximate solution at the
nth iteration, the searching direction for the solution at the next
iteration step, and the residual vector, respectively. Under the
initial conditions:

x0 = p−1 = 0, (17)

r0 = b, (18)

α−1 = 1, β−1 = 0, (19)

we solve the following equations:

xn = xn−1 + αn−1pn−1, (20)

rn = rn−1 − αn−1 Apn−1, (21)

pn = rn + βn−1pn−1, (22)

αn−1 = (rn−1, rn−1)

(pn−1, Apn−1)
, (23)

βn−1 = (rn, rn)

(rn−1, rn−1)
. (24)

The vector sets {rn} and {pn} satisfy the following
relations:

(ri , r j ) = 0, i �= j (orthogonality relation) (25)

(pi , Ap j ) = 0, i �= j (conjugacy relation). (26)

The residual vectors {r0, r1, r2, . . .} vanish, at most, after N−1
iteration steps, where N is the dimension of the simultaneous
linear equations.

3.2. Complex symmetric matrix and the COCG method

In many problems of physics and engineering, the Hamiltonian
H is real symmetric and the matrix A is defined as

A = z − H, (27)

In other words, the off-diagonal part of A is real symmetric and
the diagonal elements can be complex.

Here, instead of the definition of the ‘standard’ inner
product equation (15), we define the ‘non-standard’ one as

(u, v) = uTv =
ν∑

i=1

uivi , (28)
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and the orthogonal residual condition in the COCG method is

rn ⊥ Kn(H, r0), (29)

where the ‘overline’ denotes ‘conjugate’.
Then the conjugate orthogonal conjugate gradient

(COCG) method can be constructed in a very similar way [3],
with the same initial conditions as the CG method x0 = p−1 =
0, r0 = b, α−1 = 1, and β−1 = 0:

xn = xn−1 + αn−1pn−1, (30)

rn = rn−1 − αn−1 Apn−1, (31)

pn = rn + βn−1pn−1, (32)

αn−1 = (rn−1, rn−1)

(pn−1, Apn−1)
, (33)

βn−1 = (rn, rn)

(rn−1, rn−1)
. (34)

We should note that, in the procedure of iteration, (v, v) =
0 can happen even in the case of v �= 0 because of the non-
standard inner product (28). The inequivalence of (v, v) =
0 and v = 0 means that the αn or βn−1 may be equal
to 0 without satisfying rn = 0. When this occurs before
the approximate solution converges, one fails to obtain the
approximate solution. However, we have not experienced such
a situation. This cannot happen in the CG method and the other
part is perfectly identical to the CG method.

A set of residual vectors rn forms the ‘orthogonalized’
base. This ‘orthogonality’ is very important for us to
understand the theorem of the collinear residual. We can
write a set of the recurrence equations in an alternative way
as follows:

rn+1 =
(

1 + βn−1αn

αn−1
− αn A

)
rn − βn−1αn

αn−1
rn−1. (35)

Taking the ‘inner product’ between rn and the equation (35),
we obtain

αn = (rn, rn)

(rn, Arn) − βn−1

αn−1
(rn, rn)

. (36)

Then the equations (36), (34) and (35) can produce all the base
vectors, rk’s (k > n), when αn−1, rn−1 and rn are supplied.

3.3. Shifted COCG method

Assuming that A is a complex symmetric matrix Eref + iδref −
H , we should solve the linear simultaneous equation of

Ax = b, (37)

and its shifted equation

(A + σ)xσ = b, (38)

where σ = (E + iδ)− (Eref + iδref). We represent quantities q
in the shifted system as qσ .

The most important point of the reduction of the matrix-
vector operation is the theorem of the collinear residual [4]:

rσ
n = 1

πσ
n

rn, (39)

where πσ is a scalar function (actually a polynomial) of
σ . Then, once the {rn} are given, the base set {rσ

n } for
the arbitrarily shifted system can be obtained by using scalar
multiplication. We obtain the recurrence equations that
determines πσ

n , ασ
n , βσ

n , xσ
n , and pσ

n , from equations (30)–(34),
by replacing A by A + σ , with the same initial conditions:

πσ
n+1 =

(
1 + βn−1αn

αn−1
+ αnσ

)
πσ

n − βn−1αn

αn−1
πσ

n−1, (40)

ασ
n = πσ

n

πσ
n+1

αn, (41)

βσ
n =

(
πσ

n

πσ
n+1

)2

βn, (42)

xσ
n = xσ

n−1 + ασ
n−1pσ

n−1 (43)

pσ
n = 1

πσ
n

rn + βσ
n−1pσ

n−1. (44)

These recurrence equations can be solved without time
consuming matrix-vector operations. In actual calculations,
we need only one matrix-vector product of a real sparse
matrix and a complex vector. Each component of the vector
equations (40)–(44) can be solved separately, because of an
absence of the matrix operation.

The energy shift parameter σ can be a complex
number. When one applies the theorem of the collinear
residual [4] to the COCG method, the shifted COCG method is
constructed [5, 6]. The essential property is based on the basic
invariance theorem of the Krylov subspace equation (14) under
an energy shift Eref +σ from Eref. A very important fact is that
this shift procedure is a scalar linear calculation. The main cost
in the calculations is incurred for those of the seed energy Eref;
the rest is a scalar linear calculation which is negligible from
the viewpoint of time consumption.

The complex symmetric linear equations can be treated in
the QMR SYM [7] method and the idea of shift equations here
is extended to the QMR SYM method [8].

3.4. Seed switching technique

The choice of the seed energy Eref is not unique and any
choice gives the same convergence behavior of the solutions
xn at any energy point. However, when the seed energy is
chosen at an energy point where the convergence is too fast,
the exponent of the scale factor πσ

n sometimes becomes too
large (πσ

n ∼ 10−100) for other energy points and may lead to
erroneous results. Therefore, the seed energy should be chosen
at the energy point where the convergence is the slowest.

Other possibility is the seed switching [9, 6]: we can
choose the seed energy at an arbitrary energy point. Let
us assume that the convergence at the seed energy has been
satisfied before the calculation of the shift equations has
converged. In such a case, one chooses a new seed energy Enew

ref
and continues the calculation with that seed energy, without
discarding the information from the previous calculation with
the old Eref.

3



J. Phys.: Condens. Matter 22 (2010) 074206 T Fujiwara et al

Figure 1. COCG calculation in a Si crystal. (a) Density of states of a Si single crystal with 512 atoms. (b) Convergence behavior at different
energies. (c) Iteration dependence of the residual norm. The behavior B, V, G, C corresponds to the energy point in (a).

3.5. Accuracy control with the residual vector and robustness
of the shifted COCG method

The residual vector rn can be monitored during the iterative
calculation and we can stop the iterative procedure, without
fixing the dimension of the Krylov subspace, once one reaches
the required accuracy. The norm of the residual vector is
the upper limit of the accuracy of the Green’s function [6].
The shifted COCG method is numerically robust and one can
reduce the norm of the residual vector to the machine accuracy.
Therefore, the shifted COCG method may be used to calculate
an accurate or fine density of electronic states in the electron
spectra of large-scale systems or the fine excitation spectra in
many-electron problems.

4. Application to nano-scale systems

4.1. Formation and propagation of fracture in a silicon crystal

Nano-scale systems have received much attention and the first
principles molecular dynamics simulation has been extending
its role in material science and development. We have
developed a set of computational methods for electronic
structure calculations, i.e. the generalized Wannier state
method [10–12], the Krylov subspace method [13], and the
shifted COCG method for nano-scale systems [5].

Here we demonstrate a calculation of the electronic
structure in bulk Si using the COCG method. We use the tight-
binding Hamiltonian by Kwon et al [14]. The system is of Si
512 atoms with a cubic simulation cell. (The size of the present
Hamiltonian matrix is (4 × 512) × (4 × 512)). The imaginary
part of the Green’s function, corresponding to the density of
states, is shown in figure 1(a). Since the Nene = 1000 energy
points are selected with a small imaginary part δ = 0.002 au,
the spectrum consists of a set of spikes. Figure 1(b) shows the
iteration numbers for four cases of the convergence criterion
10ε, from 10−4 to 10−16, applied in the COCG method. An
energy point with the larger density of states requires the
more iterations, because the dimension of the Krylov subspace
should be larger in order to distinguish individuals among

densely distributed nearby states. In figure 1(c), we compare
the decaying behavior

||r( j)
n ||2 =

∑

i

|〈i |r ( j)
n 〉|2 =

∑

i

|(i, r)|2 (45)

for chosen energy points B, V, G and C in the band region
shown in figure 1(a). Among these energy points, the Green’s
function calculation converges very rapidly at the energy point
B, and those at other energy points are slower. If one choose the
seed energy at the point B, one should switch it to other point
soon. Even so, the total iteration steps for the convergence
over the whole energy range is not sensitive to a choice of a
seed energy and the times of seed switching, when we adopt
the seed switching technique.

4.2. Excitation spectrum of multi-orbital extended Hubbard
model

Strongly correlated electron systems have attracted much
attention in both fundamental and applied physics and
chemistry. These systems show a drastic change of physical
properties with a small change of electron/hole concentration,
electric or magnetic field, pressure etc. A stripe order of
charge and spin has been found in several layered perovskites
and organic conductors. Nickel compound La2−x Srx NiO4 is a
typical system of stripe order of charge and spin [15–17].

We applied the shifted COCG method to a double
orbital extended Hubbard model of the layered perovskite
La3/2Sr1/2NiO4 [18, 6], the

√
8×√

8 square lattice of a periodic
boundary condition with 12 electrons. The Hamiltonian is as
follows:

Ĥ =
∑

i, j,α,β,σ

tiα jβ ĉ†
iασ ĉ jβσ +

∑

i,α,σ

εiαn̂iασ

+ U
∑

i,α

n̂iα↑n̂iα↓ + (U − 2J )
∑

i,σ,σ ′
n̂i,3z2−1,σ n̂i,x2−y2,σ ′

+ J

2

∑

i,α �=β,σ,σ ′
(ĉ†

iασ ĉ†
iβσ ′ ĉiασ ′ ĉiβσ + ĉ†

iασ ĉ†
iασ ′ ĉiβσ ′ ĉiβσ )

+ V
∑

〈i, j〉,α,β,σ,σ ′
n̂iασ n̂ jβσ ′, (46)
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Figure 2. Energy spectra and seed switching in the extended Hubbard model on a two-dimensional square lattice.

Table 1. The values of parameters in the Hamiltonian in units of
eV [6, 18]. The prime symbol at the right shoulder of ‘t’ means the
second n.n. hopping.

tddσ tddδ
1
4 t ′

ddσ + 3
4 t ′

ddδ t ′
ddπ 	 U J V

−0.543 0.058 −0.018 −0.023 0.97 7.5 0.88 0.5

where the suffix {i, j}, {α, β} and {σ, σ ′} denote the site,
the orbitals 3z2 − 1 or x2 − y2, and the spin coordinate,
respectively. The annihilation and number operator are ĉ and
n̂, respectively. The quantities t , ε, U , J , V are the Slater–
Koster type hopping parameter, the single-electron energy,
the on-site Coulomb interaction, on-site exchange interaction,
and intersite Coulomb interaction, respectively. Hopping
parameters are finite for nearest neighbor (n.n.) and second
n.n. pairs of sites. The braces 〈· · ·〉 means that the two sites
enclosed by them are the n.n. sites.

First, the ground state |G〉 was searched for by the CG
method. We analyzed the effects of V and the anisotropy of
the hopping integral between the second n.n. pair. The charge
and stripe order of the ground state is investigated in the many-
electron wavefunctions. To know whether the ground state is
insulating or metallic, the excitation spectra were studied with
the help of the shifted COCG method.

The charge gap and order are created by the intersite
Coulomb interaction V . Once the charge ordered of Ni ions
(Ni3+ and Ni2+) exists and, if we introduce a small anisotropy
of 0.02 eV of hopping between second n.n. Ni pairs, the spin
stripe order is stabilized [18]. We cannot see any difference in
the density of states between the second n.n. hopping integrals
with/without such a small anisotropy of hopping integral.
In the present paper, we choose the isotropic (tetragonal)
parameter set shown in table 1. Figure 2(a) shows the change of
spectra with changing V and the insulating gap is formed due
to finite values of V . We show the seed switching procedure in
figure 2(b).

The size of our Hilbert space is (16C6) × (16C6) =
64 128 064 for the ground state calculation (Sz = 0), (16C7) ×
(16C6) = 91 611 520 for the affinity level calculation and

(16C5) × (16C6) = 34 978 944 for the ionization level
calculation. This calculation of the sparse matrix-vector
product is parallelized and can be accomplished in 1.9 s
in the affinity level calculation and 0.5 s in the ionization
level calculation by using a one-node (16 CPU) of a modern
supercomputer (HITACHI-SR1100).

5. Conclusions

We have reviewed our recently developed methods for large-
scale simultaneous linear equations and applications to both
one-electron theory and many-electron theory. The most
crucial point is that the idea is based on mathematical theory
and the accuracy can be monitored and controlled during the
calculations. Then we presented examples of the applications
to nano-scale Si crystals and the orbital degenerated extended
Hubbard model. We would like to stress the importance of
this novel computational algorithm in problems of large-scale
simultaneous equations.
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